Brynn was diagnosed with type 1 diabetes (T1D) when she was two years old. She loves cheerleading and eagerly looks forward to starting kindergarten soon. Most of all, she is looking forward to a world without T1D.

The Burden of Diabetes

Type 1 diabetes (T1D) strikes suddenly both children and adults at any age. Its onset has nothing to do with diet or lifestyle. Though T1D’s causes are not yet entirely understood, scientists believe that both genetic factors and environmental triggers play a role. There is currently nothing you can do to prevent it and there is no cure. Type 2 diabetes (T2D) is not an autoimmune disease. With T2D, the body still produces insulin but cannot use it effectively. While T1D and T2D are different, the resulting costly and burdensome complications are the same.

Together, we can and must do better.

People with diabetes are living longer, healthier lives with fewer complications because of scientific advances, including innovative research supported by the SDP. Continued funding of the SDP will keep this research going, improve these sobering statistics, relieve the daily burden for people with T1D and reduce the economic toll of diabetes to the healthcare system and the U.S. government.

$327B
Annual cost of diabetes to the U.S. economy in 2017

30.3M
Number of Americans with diabetes

32%
Percent of Medicare budget spent on people with diabetes

$327B
Increase in the prevalence of T1D in people under age 20 between 2001 and 2009

3x
Health costs of diabetes predicted to nearly triple in the next 25 years

#1
Diabetes is the leading cause of kidney disease, blindness in working-age adults, and amputations unrelated to accidents

Please join us in supporting the renewal of the SDP.

JDRF research and advocacy efforts seek to do the greatest good for the largest number of people in the shortest period of time. We know we can only do so with continued partnership with the Federal government. The combination of Federal diabetes research funding and JDRF’s private investment constitutes one of the world’s most effective public–private partnerships focused on curing a disease. We’ve accomplished so much but significant further research is required to cure, prevent and treat T1D and its complications. Thank you for your support.

Alecia has been living with T1D for 34 years. Because of the Special Diabetes Program, living with T1D just became a whole lot easier.

Alecia is enrolled in a 9-month clinical trial for an automated closed-loop artificial pancreas at Mt. Sinai Hospital in New York City. This trial, funded by the SDP, is giving her better control of her diabetes than she has had at any point in her life. It minimizes low blood sugars and corrects high blood sugars, giving her peace of mind that is allowing her to sleep through the night—something she hasn’t done regularly in decades.

Alecia is looking forward to the day when others can have access to this incredible technology.
The Special Diabetes Program

Congress created the SDP to address the growing burden of diabetes on people living with the disease and our nation’s economy. The program comprises two initiatives—one to advance T1D research at the National Institutes of Health (NIH) and one to fund treatment, education, and prevention programs for American Indians and Alaska Native populations, which are disproportionately affected by type 2 diabetes (T2D). Congress reviews these programs together, currently at $150 million each per year.

The SDP has led to significant scientific breakthroughs like new treatments that have improved lives for Americans living with diabetes and artificial pancreas (AP) systems that will automate blood-glucose management. The JDRF community is grateful for the tradition of broad, bipartisan support in Congress for the SDP.

Nina is 13 and in 8th grade. She enjoys hanging out with friends and being on her phone. As a reader, she participated in trials that revealed the impact of the SDP-funded trial that revealed the impact of the SDP-funded trials. She is still participating in this trial and is not diabetic eye disease. This critically important research has the potential to prevent T1D onset altogether.

The JDRF community is grateful for the tradition of broad, bipartisan support in Congress for the SDP. We ask Congress to provide at least a three-year renewal for the SDP by September 30, 2019 so researchers can build upon past successes, allocate funding most effectively, and continue promising trials that could lead to better treatments, prevention strategies and ultimately a cure for T1D.

If new therapies could lower ESRD rates by 50%, Medicare would save more than $51.6 billion in 10 years and nearly $136 billion in 25 years.

Therapeutic Immune Drugs

The special diabetes program...

Environmental Triggers

Researchers are more than halfway through a 15-year study with more than 8,000 at-risk children enrolled at birth, to determine what environmental factors influence T1D onset. Information on diet, infections and other exposures is being analyzed to increase our understanding of the cause of T1D, as well as other autoimmune diseases. Results to date indicate that there are multiple pathways leading to T1D onset and that broadening the data is the most important factor in determining how the gut microbiome develops in the first few years of life. Ongoing measurements of further exposures, genetic variants and other studies are needed so that strategies can be developed to prevent T1D onset, ranging from a vaccine to specific dietary changes.

Beta Cell Replacement

Transplanting insulin-producing beta cells from cadavers into diabetics with a person to T1D has proven to be successful, and can normalize blood glucose for years. This therapy would provide a functional cure but it relies on the limited amount of donor slots and recipient must take powerful immunosuppressant drugs. There have been remarkable advances in generating an unlimited source of insulin-producing cells, and strategies to protect them after transplantation without the need for broad immune suppression, but there is a critical need for further research and clinical trials that will one day deliver life-changing therapies that place healthy insulin-producing cells back into the bodies of people with T1D.

Immune Therapies

Immune therapy drugs have been shown to slow the immune attack for approximately one year or more in patients newly diagnosed with T1D. Patients required less insulin and had improved blood-glucose control for a period of time. Because current immune therapy drugs can have side effects, the research will help find new drugs with fewer adverse effects, further research will help find new drugs with more selective action, as well as drug combinations, to prolong a newly diagnosed person’s ability to produce insulin and ultimately halt the autoimmune attack permanently.

Beta Cell Replacement

Transplanting insulin-producing beta cells from cadavers into diabetics with a person to T1D has proven to be successful, and can normalize blood glucose for years. This therapy would provide a functional cure but it relies on the limited amount of donor slots and recipient must take powerful immunosuppressant drugs. There have been remarkable advances in generating an unlimited source of insulin-producing cells, and strategies to protect them after transplantation without the need for broad immune suppression, but there is a critical need for further research and clinical trials that will one day deliver life-changing therapies that place healthy insulin-producing cells back into the bodies of people with T1D.